|
| 1 | +const MOD = BigInt(1e9 + 7); |
| 2 | + |
| 3 | +var countBalancedPermutations = function (num) { |
| 4 | +let tot = 0; |
| 5 | +const n = num.length; |
| 6 | +const cnt = new Array(10).fill(0); |
| 7 | + |
| 8 | +// Count the frequency of each digit in num |
| 9 | +for (const ch of num) { |
| 10 | +const d = parseInt(ch); |
| 11 | +cnt[d]++; |
| 12 | +tot += d; // Total sum of digits |
| 13 | +} |
| 14 | + |
| 15 | +// If the total sum is odd, we cannot divide it into two equal parts |
| 16 | +if (tot % 2 !== 0) { |
| 17 | +return 0; |
| 18 | +} |
| 19 | + |
| 20 | +const target = tot / 2; // Half of the total sum |
| 21 | +const maxOdd = Math.floor((n + 1) / 2); // Maximum possible odd positions |
| 22 | + |
| 23 | +// Precompute binomial coefficients using Pascal's triangle |
| 24 | +const comb = new Array(maxOdd + 1); |
| 25 | +for (let i = 0; i <= maxOdd; i++) { |
| 26 | +comb[i] = new Array(maxOdd + 1).fill(0n); |
| 27 | +comb[i][i] = comb[i][0] = 1n; |
| 28 | +for (let j = 1; j < i; j++) { |
| 29 | +comb[i][j] = (comb[i - 1][j] + comb[i - 1][j - 1]) % MOD; |
| 30 | +} |
| 31 | +} |
| 32 | + |
| 33 | +// DP table to store results: f[curr][oddCnt] is the number of ways to get sum 'curr' with 'oddCnt' odd digits |
| 34 | +const f = new Array(Number(target) + 1); |
| 35 | +for (let i = 0; i <= Number(target); i++) { |
| 36 | +f[i] = new Array(maxOdd + 1).fill(0n); |
| 37 | +} |
| 38 | +f[0][0] = 1n; |
| 39 | + |
| 40 | +let psum = 0, totSum = 0; |
| 41 | + |
| 42 | +// Loop through each digit from 0 to 9 |
| 43 | +for (let i = 0; i <= 9; i++) { |
| 44 | +psum += cnt[i]; // Sum of the number of digits <= i |
| 45 | +totSum += i * cnt[i]; // Total sum of digits <= i |
| 46 | + |
| 47 | +// Try all combinations of odd and even positioned digits |
| 48 | +for (let oddCnt = Math.min(psum, maxOdd); oddCnt >= Math.max(0, psum - (n - maxOdd)); oddCnt--) { |
| 49 | +const evenCnt = psum - oddCnt; |
| 50 | + |
| 51 | +for (let curr = Math.min(totSum, target); curr >= Math.max(0, totSum - target); curr--) { |
| 52 | +let res = 0n; |
| 53 | +// Try all valid splits of the current digit into odd and even positions |
| 54 | +for (let j = Math.max(0, cnt[i] - evenCnt); j <= Math.min(cnt[i], oddCnt) && i * j <= curr; j++) { |
| 55 | +const ways = (comb[oddCnt][j] * comb[evenCnt][cnt[i] - j]) % MOD; |
| 56 | +res = (res + ((ways * f[curr - i * j][oddCnt - j]) % MOD)) % MOD; |
| 57 | +} |
| 58 | +f[curr][oddCnt] = res % MOD; |
| 59 | +} |
| 60 | +} |
| 61 | +} |
| 62 | + |
| 63 | +// Return the result for the target sum with the maximum number of odd digits |
| 64 | +return Number(f[target][maxOdd]); |
| 65 | +}; |
0 commit comments