huggingface/pytorch-image-models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

  • Initial NaFlexVit model code. NaFlexVit is a Vision Transformer with:
    1. Encapsulated embedding and position encoding in a single module
    2. Support for nn.Linear embedding on pre-ified (dictionary) inputs
    3. Support for NaFlex variable aspect, variable resolution (SigLip-2: https://arxiv.org/abs/2502.14786)
    4. Support for FlexiViT variable size (https://arxiv.org/abs/2212.08013)
    5. Support for NaViT fractional/factorized position embedding (https://arxiv.org/abs/2307.06304)
  • Existing vit models in vision_transformer.py can be loaded into the NaFlexVit model by adding the use_naflex=True flag to create_model
    • Some native weights coming soon
  • A full NaFlex data pipeline is available that allows training / fine-tuning / evaluating with variable aspect / size images
    • To enable in train.py and validate.py add the --naflex-loader arg, must be used with a NaFlexVit
  • To evaluate an existing (classic) ViT loaded in NaFlexVit model w/ NaFlex data pipe:
    • python validate.py /imagenet --amp -j 8 --model vit_base_16_224 --model-kwargs use_naflex=True --naflex-loader --naflex-max-seq-len 256
  • The training has some extra args features worth noting
    • The --naflex-train-seq-lens' argument specifies which sequence lengths to randomly pick from per batch during training
    • The --naflex-max-seq-len argument sets the target sequence length for validation
    • Adding --model-kwargs enable__interpolator=True --naflex--sizes 12 16 24 will enable random size selection per-batch w/ interpolation
    • The --naflex-loss-scale arg changes loss scaling mode per batch relative to the batch size, timm NaFlex loading changes the batch size for each seq len
  • SigLIP 2 ViT image encoders added (https://huggingface.co/collections/timm/siglip-2-67b8e72ba08b09dd97aecaf9)
    • Variable resolution / aspect NaFlex versions are a WIP
  • Add 'SO150M2' ViT weights trained with SBB recipes, great results, better for ImageNet than previous attempt w/ less training.
    • vit_so150m2_16_reg1_gap_448.sbb_e200_in12k_ft_in1k - 88.1% top-1
    • vit_so150m2_16_reg1_gap_384.sbb_e200_in12k_ft_in1k - 87.9% top-1
    • vit_so150m2_16_reg1_gap_256.sbb_e200_in12k_ft_in1k - 87.3% top-1
    • vit_so150m2_16_reg4_gap_256.sbb_e200_in12k
  • Updated InternViT-300M '2.5' weights
  • Release 1.0.15
  • FYI PyTorch 2.6 & Python 3.13 are tested and working w/ current main and released version of timm
  • Fix loading of LeViT safetensor weights, remove conversion code which should have been deactivated
  • Add 'SO150M' ViT weights trained with SBB recipes, decent results, but not optimal shape for ImageNet-12k/1k pretrain/ft
    • vit_so150m_16_reg4_gap_256.sbb_e250_in12k_ft_in1k - 86.7% top-1
    • vit_so150m_16_reg4_gap_384.sbb_e250_in12k_ft_in1k - 87.4% top-1
    • vit_so150m_16_reg4_gap_256.sbb_e250_in12k
  • Misc typing, typo, etc. cleanup
  • 1.0.14 release to get above LeViT fix out
  • Add support to train and validate in pure bfloat16 or float16
  • wandb project name arg added by https://.com/caojiaolong, use arg.experiment for name
  • Fix old issue w/ checkpoint saving not working on filesystem w/o hard-link support (e.g. FUSE fs mounts)
  • 1.0.13 release
  • Add torch.utils.checkpoint.checkpoint() wrapper in timm.models that defaults use_reentrant=False, unless TIMM_REENTRANT_CKPT=1 is set in env.
  • Optimizer factory refactor
    • New factory works by registering optimizers using an OptimInfo dataclass w/ some key traits
    • Add list_optimizers, get_optimizer_class, get_optimizer_info to reworked create_optimizer_v2 fn to explore optimizers, get info or class
    • deprecate optim.optim_factory, move fns to optim/_optim_factory.py and optim/_param_groups.py and encourage import via timm.optim
  • Add Adopt (https://.com/iShohei220/adopt) optimizer
  • Add 'Big Vision' variant of Adafactor (https://.com/google-research/big_vision/blob/main/big_vision/optax.py) optimizer
  • Fix original Adafactor to pick better factorization dims for convolutions
  • Tweak LAMB optimizer with some improvements in torch.where functionality since original, refactor clipping a bit
  • dynamic img size support in vit, deit, eva improved to support resize from non-square grids, thanks https://.com/wojtke

Add a set of new very well trained ResNet & ResNet-V2 18/34 (basic block) weights. See https://huggingface.co/blog/rwightman/resnet-trick-or-treat

  • Cleanup torch amp usage to avoid cuda specific calls, merge support for Ascend (NPU) devices from MengqingCao that should work now in PyTorch 2.5 w/ new device extension autoloading feature. Tested Intel Arc (XPU) in Pytorch 2.5 too and it (mostly) worked.
  • Pre-activation (ResNetV2) version of 18/18d/34/34d ResNet model defs added by request (weights pending)
  • Release 1.0.10
  • MambaOut (https://.com/yuweihao/MambaOut) model & weights added. A cheeky take on SSM vision models w/o the SSM (essentially ConvNeXt w/ gating). A mix of original weights + custom variations & weights.
modelimg_sizetop1top5param_count
mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k38487.50698.428101.66
mambaout_base_plus_rw.sw_e150_in12k_ft_in1k28886.91298.236101.66
mambaout_base_plus_rw.sw_e150_in12k_ft_in1k22486.63298.156101.66
mambaout_base_tall_rw.sw_e500_in1k28884.97497.33286.48
mambaout_base_wide_rw.sw_e500_in1k28884.96297.20894.45
mambaout_base_short_rw.sw_e500_in1k28884.83297.2788.83
mambaout_base.in1k28884.7296.9384.81
mambaout_small_rw.sw_e450_in1k28884.59897.09848.5
mambaout_small.in1k28884.596.97448.49
mambaout_base_wide_rw.sw_e500_in1k22484.45496.86494.45
mambaout_base_tall_rw.sw_e500_in1k22484.43496.95886.48
mambaout_base_short_rw.sw_e500_in1k22484.36296.95288.83
mambaout_base.in1k22484.16896.6884.81
mambaout_small.in1k22484.08696.6348.49
mambaout_small_rw.sw_e450_in1k22484.02496.75248.5
mambaout_tiny.in1k28883.44896.53826.55
mambaout_tiny.in1k22482.73696.126.55
mambaout_kobe.in1k28881.05495.7189.14
mambaout_kobe.in1k22479.98694.9869.14
mambaout_femto.in1k28879.84895.147.3
mambaout_femto.in1k22478.8794.4087.3
  • Updated SBB ViT models trained on ImageNet-12k and fine-tuned on ImageNet-1k, challenging quite a number of much larger, slower models
modeltop1top5param_countimg_size
vit_mediumd_16_reg4_gap_384.sbb2_e200_in12k_ft_in1k87.43898.25664.11384
vit_mediumd_16_reg4_gap_256.sbb2_e200_in12k_ft_in1k86.60897.93464.11256
vit_betwixt_16_reg4_gap_384.sbb2_e200_in12k_ft_in1k86.59498.0260.4384
vit_betwixt_16_reg4_gap_256.sbb2_e200_in12k_ft_in1k85.73497.6160.4256
  • MobileNet-V1 1.25, EfficientNet-B1, & ResNet50-D weights w/ MNV4 baseline challenge recipe
modeltop1top5param_countimg_size
resnet50d.ra4_e3600_r224_in1k81.83895.92225.58288
efficientnet_b1.ra4_e3600_r240_in1k81.44095.7007.79288
resnet50d.ra4_e3600_r224_in1k80.95295.38425.58224
efficientnet_b1.ra4_e3600_r240_in1k80.40695.1527.79240
mobilenetv1_125.ra4_e3600_r224_in1k77.60093.8046.27256
mobilenetv1_125.ra4_e3600_r224_in1k76.92493.2346.27224
  • Add SAM2 (HieraDet) backbone arch & weight loading support
  • Add Hiera Small weights trained w/ abswin pos embed on in12k & fine-tuned on 1k
modeltop1top5param_count
hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k84.91297.26035.01
hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k84.56097.10635.01
  • Add mobilenet_edgetpu_v2_m weights w/ ra4 mnv4-small based recipe. 80.1% top-1 @ 224 and 80.7 @ 256.
  • Release 1.0.8
  • More MobileNet-v4 weights, ImageNet-12k pretrain w/ fine-tunes, and anti-aliased ConvLarge models
modeltop1top1_errtop5top5_errparam_countimg_size
mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k84.9915.0197.2942.70632.59544
mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k84.77215.22897.3442.65632.59480
mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k84.6415.3697.1142.88632.59448
mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k84.31415.68697.1022.89832.59384
mobilenetv4_conv_aa_large.e600_r384_in1k83.82416.17696.7343.26632.59480
mobilenetv4_conv_aa_large.e600_r384_in1k83.24416.75696.3923.60832.59384
mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k82.9917.0196.673.3311.07320
mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k82.36417.63696.2563.74411.07256
modeltop1top1_errtop5top5_errparam_countimg_size
efficientnet_b0.ra4_e3600_r224_in1k79.36420.63694.7545.2465.29256
efficientnet_b0.ra4_e3600_r224_in1k78.58421.41694.3385.6625.29224
mobilenetv1_100h.ra4_e3600_r224_in1k76.59623.40493.2726.7285.28256
mobilenetv1_100.ra4_e3600_r224_in1k76.09423.90693.0046.9964.23256
mobilenetv1_100h.ra4_e3600_r224_in1k75.66224.33892.5047.4965.28224
mobilenetv1_100.ra4_e3600_r224_in1k75.38224.61892.3127.6884.23224
  • of set_input_size() added to vit and swin v1/v2 models to allow changing image size, size, window size after model creation.
  • Improved support in swin for different size handling, in addition to set_input_size, always_partition and strict_img_size args have been added to __init__ to allow more flexible input size constraints
  • Fix out of order indices info for intermediate 'Getter' feature wrapper, check out or range indices for same.
  • Add several tiny < .5M param models for testing that are actually trained on ImageNet-1k
modeltop1top1_errtop5top5_errparam_countimg_sizecrop_pct
test_efficientnet.r160_in1k47.15652.84471.72628.2740.361921.0
test_byobnet.r160_in1k46.69853.30271.67428.3260.461921.0
test_efficientnet.r160_in1k46.42653.57470.92829.0720.361600.875
test_byobnet.r160_in1k45.37854.62270.57229.4280.461600.875
test_vit.r160_in1k42.058.068.66431.3360.371921.0
test_vit.r160_in1k40.82259.17867.21232.7880.371600.875
  • Fix vit reg token init, thanks Promisery
  • Other misc fixes
  • 3 more MobileNetV4 hyrid weights with different MQA weight init scheme
modeltop1top1_errtop5top5_errparam_countimg_size
mobilenetv4_hybrid_large.ix_e600_r384_in1k84.35615.64496.8923.10837.76448
mobilenetv4_hybrid_large.ix_e600_r384_in1k83.99016.01096.7023.29837.76384
mobilenetv4_hybrid_medium.ix_e550_r384_in1k83.39416.60696.7603.24011.07448
mobilenetv4_hybrid_medium.ix_e550_r384_in1k82.96817.03296.4743.52611.07384
mobilenetv4_hybrid_medium.ix_e550_r256_in1k82.49217.50896.2783.72211.07320
mobilenetv4_hybrid_medium.ix_e550_r256_in1k81.44618.55495.7044.29611.07256
  • florence2 weight loading in DaViT model
  • MobileNetV4 models and initial set of timm trained weights added:
modeltop1top1_errtop5top5_errparam_countimg_size
mobilenetv4_hybrid_large.e600_r384_in1k84.26615.73496.9363.06437.76448
mobilenetv4_hybrid_large.e600_r384_in1k83.80016.20096.7703.23037.76384
mobilenetv4_conv_large.e600_r384_in1k83.39216.60896.6223.37832.59448
mobilenetv4_conv_large.e600_r384_in1k82.95217.04896.2663.73432.59384
mobilenetv4_conv_large.e500_r256_in1k82.67417.32696.313.6932.59320
mobilenetv4_conv_large.e500_r256_in1k81.86218.13895.694.3132.59256
mobilenetv4_hybrid_medium.e500_r224_in1k81.27618.72495.7424.25811.07256
mobilenetv4_conv_medium.e500_r256_in1k80.85819.14295.7684.2329.72320
mobilenetv4_hybrid_medium.e500_r224_in1k80.44219.55895.384.6211.07224
mobilenetv4_conv_blur_medium.e500_r224_in1k80.14219.85895.2984.7029.72256
mobilenetv4_conv_medium.e500_r256_in1k79.92820.07295.1844.8169.72256
mobilenetv4_conv_medium.e500_r224_in1k79.80820.19295.1864.8149.72256
mobilenetv4_conv_blur_medium.e500_r224_in1k79.43820.56294.9325.0689.72224
mobilenetv4_conv_medium.e500_r224_in1k79.09420.90694.775.239.72224
mobilenetv4_conv_small.e2400_r224_in1k74.61625.38492.0727.9283.77256
mobilenetv4_conv_small.e1200_r224_in1k74.29225.70892.1167.8843.77256
mobilenetv4_conv_small.e2400_r224_in1k73.75626.24491.4228.5783.77224
mobilenetv4_conv_small.e1200_r224_in1k73.45426.54691.348.663.77224
  • Apple MobileCLIP (https://arxiv.org/pdf/2311.17049, FastViT and ViT-B) image tower model support & weights added (part of OpenCLIP support).
  • ViTamin (https://arxiv.org/abs/2404.02132) CLIP image tower model & weights added (part of OpenCLIP support).
  • OpenAI CLIP Modified ResNet image tower modelling & weight support (via ByobNet). Refactor AttentionPool2d.
  • Support loading PaliGemma jax weights into SigLIP ViT models with average pooling.
  • Add Hiera models from Meta (https://.com/facebookresearch/hiera).
  • Add normalize= flag for transforms, return non-normalized torch.Tensor with original dytpe (for chug)
  • Version 1.0.3 release
  • Searching for Better ViT Baselines (For the GPU Poor) weights and vit variants released. Exploring model shapes between Tiny and Base.
modeltop1top5param_countimg_size
vit_mediumd_16_reg4_gap_256.sbb_in12k_ft_in1k86.20297.87464.11256
vit_betwixt_16_reg4_gap_256.sbb_in12k_ft_in1k85.41897.4860.4256
vit_mediumd_16_rope_reg1_gap_256.sbb_in1k84.32296.81263.95256
vit_betwixt_16_rope_reg4_gap_256.sbb_in1k83.90696.68460.23256
vit_base_16_rope_reg1_gap_256.sbb_in1k83.86696.6786.43256
vit_medium_16_rope_reg1_gap_256.sbb_in1k83.8196.82438.74256
vit_betwixt_16_reg4_gap_256.sbb_in1k83.70696.61660.4256
vit_betwixt_16_reg1_gap_256.sbb_in1k83.62896.54460.4256
vit_medium_16_reg4_gap_256.sbb_in1k83.4796.62238.88256
vit_medium_16_reg1_gap_256.sbb_in1k83.46296.54838.88256
vit_little_16_reg4_gap_256.sbb_in1k82.51496.26222.52256
vit_wee_16_reg1_gap_256.sbb_in1k80.25695.36013.42256
vit_pwee_16_reg1_gap_256.sbb_in1k80.07295.13615.25256
vit_mediumd_16_reg4_gap_256.sbb_in12kN/AN/A64.11256
vit_betwixt_16_reg4_gap_256.sbb_in12kN/AN/A60.4256
  • AttentionExtract helper added to extract attention maps from timm models. See example in #1232 (comment)
  • forward_intermediates() API refined and added to more models including some ConvNets that have other extraction methods.
  • 1017 of 1047 model architectures support features_only=True feature extraction. Remaining 34 architectures can be supported but based on priority requests.
  • Remove torch.jit.script annotated functions including old JIT activations. Conflict with dynamo and dynamo does a much better job when used.
  • Prepping for a long overdue 1.0 release, things have been stable for a while now.
  • Significant feature that's been missing for a while, features_only=True support for ViT models with flat hidden states or non-std module layouts (so far covering 'vit_*', 'twins_*', 'deit*', 'beit*', 'mvitv2*', 'eva*', 'samvit_*', 'flexivit*')
  • Above feature support achieved through a new forward_intermediates() API that can be used with a feature wrapping module or directly.
model = timm.create_model('vit_base_16_224')
final_feat, intermediates = model.forward_intermediates(input) 
output = model.forward_head(final_feat)  # pooling + classifier head

print(final_feat.shape)
torch.Size([2, 197, 768])

for f in intermediates:
    print(f.shape)
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])

print(output.shape)
torch.Size([2, 1000])
model = timm.create_model('eva02_base_16_clip_224', pretrained=True, img_size=512, features_only=True, out_indices=(-3, -2,))
output = model(torch.randn(2, 3, 512, 512))

for o in output:    
    print(o.shape)   
torch.Size([2, 768, 32, 32])
torch.Size([2, 768, 32, 32])
  • TinyCLIP vision tower weights added, thx Thien Tran
  • Next-ViT models added. Adapted from https://.com/bytedance/Next-ViT
  • HGNet and PP-HGNetV2 models added. Adapted from https://.com/PaddlePaddle/PaddleClas by SeeFun
  • Removed setup.py, moved to pyproject.toml based build supported by PDM
  • Add updated model EMA impl using _for_each for less overhead
  • Support device args in train script for non GPU devices
  • Other misc fixes and small additions
  • Min supported Python version increased to 3.8
  • Release 0.9.16

PyTorch Image Models (timm) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results.

The work of many others is present here. I've tried to make sure all source material is acknowledged via links to , arxiv papers, etc in the README, documentation, and code docstrings. Please let me know if I missed anything.

All model architecture families include variants with pretrained weights. There are specific model variants without any weights, it is NOT a bug. Help training new or better weights is always appreciated.

To see full list of optimizers w/ descriptions: timm.optim.list_optimizers(with_description=True)

Included optimizers available via timm.optim.create_optimizer_v2 factory method:

Several (less common) features that I often utilize in my projects are included. Many of their additions are the reason why I maintain my own set of models, instead of using others' via PIP:

Model validation results can be found in the results tables

The official documentation can be found at https://huggingface.co/docs/hub/timm. Documentation contributions are welcome.

Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide by Chris Hughes is an extensive blog post covering many aspects of timm in detail.

timmdocs is an alternate set of documentation for timm. A big thanks to Aman Arora for his efforts creating timmdocs.

paperswithcode is a good resource for browsing the models within timm.

The root folder of the repository contains reference train, validation, and inference scripts that work with the included models and other features of this repository. They are adaptable for other datasets and use cases with a little hacking. See documentation.

One of the greatest assets of PyTorch is the community and their contributions. A few of my favourite resources that pair well with the models and components here are listed below.

The code here is licensed Apache 2.0. I've taken care to make sure any third party code included or adapted has compatible (permissive) licenses such as MIT, BSD, etc. I've made an effort to avoid any GPL / LGPL conflicts. That said, it is your responsibility to ensure you comply with licenses here and conditions of any dependent licenses. Where applicable, I've linked the sources/references for various components in docstrings. If you think I've missed anything please create an issue.

So far all of the pretrained weights available here are pretrained on ImageNet with a select few that have some additional pretraining (see extra note below). ImageNet was released for non-commercial research purposes only (https://image-net.org/download). It's not clear what the implications of that are for the use of pretrained weights from that dataset. Any models I have trained with ImageNet are done for research purposes and one should assume that the original dataset license applies to the weights. It's best to seek legal advice if you intend to use the pretrained weights in a commercial product.

Several weights included or references here were pretrained with proprietary datasets that I do not have access to. These include the Facebook WSL, SSL, SWSL ResNe(Xt) and the Google Noisy Student EfficientNet models. The Facebook models have an explicit non-commercial license (CC-BY-NC 4.0, https://.com/facebookresearch/semi-supervised-ImageNet1K-models, https://.com/facebookresearch/WSL-Images). The Google models do not appear to have any restriction beyond the Apache 2.0 license (and ImageNet concerns). In either case, you should contact Facebook or Google with any questions.

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {},
  journal = { repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://.com/rwightman/pytorch-image-models}}
}

DOI

About

The largest collection of PyTorch image encoders / backbones. Including train, eval, inference, export scripts, and pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNetV4, MobileNet-V3 & V2, RegNet, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and more

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Sponsor this project

    Packages

    No packages published