Count set bits in an integer using Lookup Table
Write an efficient program to count number of 1s in binary representation of an integer.
Examples:
Input : n = 6
Output : 2
Binary representation of 6 is 110 and has 2 set bitsInput : n = 13
Output : 3
Binary representation of 13 is 1101 and has 3 set bits
In the previous post we had seen different method that solved this problem in O(log n) time. In this post we solve in O(1) using lookup table. Here we assume that the size of INT is 32-bits. It’s hard to count all 32 bits in one go using lookup table (” because it’s infeasible to create lookup table of size 232-1 “). So we break 32 bits into 8 bits of chunks( How lookup table of size (28-1 ) index : 0-255 ).
LookUp Table
In lookup tale, we store count of set_bit of every
number that are in a range (0-255)
LookupTable[0] = 0 | binary 00000000 CountSetBits 0
LookupTable[1] = 1 | binary 00000001 CountSetBits 1
LookupTable[2] = 1 | binary 00000010 CountSetBits 1
LookupTable[3] = 2 | binary 00000011 CountSetBits 2
LookupTable[4] = 1 | binary 00000100 CountSetBits 1
and so...on upto LookupTable[255].
Let’s take an Example How lookup table work.
Let's number be : 354
in Binary : 0000000000000000000000101100010
Split it into 8 bits chunks :
In Binary : 00000000 | 00000000 | 00000001 | 01100010
In decimal : 0 0 1 98
Now Count Set_bits using LookupTable
LookupTable[0] = 0
LookupTable[1] = 1
LookupTable[98] = 3
so Total bits count : 4
Below is the code implementation of the above approach:
// C++ Program to count number of set bits
// using lookup table in O(1) time
#include <iostream>
using namespace std;
// Generate a lookup table for 32 bit integers
#define B2(n) n, n + 1, n + 1, n + 2
#define B4(n) B2(n), B2(n + 1), B2(n + 1), B2(n + 2)
#define B6(n) B4(n), B4(n + 1), B4(n + 1), B4(n + 2)
// Lookup table that store the reverse of each table
unsigned int lookuptable[256]
= { B6(0), B6(1), B6(1), B6(2) };
// function countset Bits Using lookup table
// ans return set bits count
unsigned int countSetBits(int N)
{
// first chunk of 8 bits from right
unsigned int count = lookuptable[N & 0xff] +
// second chunk from right
lookuptable[(N >> 8) & 0xff] +
// third and fourth chunks
lookuptable[(N >> 16) & 0xff]
+ lookuptable[(N >> 24) & 0xff];
return count;
}
int main()
{
unsigned int N = 354;
cout << countSetBits(N) << endl;
return 0;
}
// Java count to count number of set bits
// using lookup table in O(1) time
// Generate a lookup table for 32 bit integers
import java.util.*;
class GFG {
static ArrayList<Integer> lookuptable
= new ArrayList<Integer>();
static void B2(int n)
{
lookuptable.add(n);
lookuptable.add(n + 1);
lookuptable.add(n + 1);
lookuptable.add(n + 2);
}
static void B4(int n)
{
B2(n);
B2(n + 1);
B2(n + 1);
B2(n + 2);
}
static void B6(int n)
{
B4(n);
B4(n + 1);
B4(n + 1);
B4(n + 2);
}
// function countset Bits Using lookup table
// ans return set bits count
static int countSetBits(int N)
{
// adding the bits in chunks of 8 bits
int count = lookuptable.get(N & 0xff)
+ lookuptable.get((N >> 8) & 0xff)
+ lookuptable.get((N >> 16) & 0xff)
+ lookuptable.get((N >> 24) & 0xff);
return count;
}
// Driver Code
public static void main(String[] args)
{
// Lookup table that store the reverse of each table
B6(0);
B6(1);
B6(1);
B6(2);
int N = 354;
// Function Call
System.out.println(countSetBits(N));
}
}
// This code is contributed by phasing17
# Python3 count to count number of set bits
# using lookup table in O(1) time
# Generate a lookup table for 32 bit integers
lookuptable = []
def B2(n):
lookuptable.extend([n, n + 1, n + 1, n + 2])
def B4(n):
B2(n), B2(n + 1), B2(n + 1), B2(n + 2)
def B6(n):
B4(n), B4(n + 1), B4(n + 1), B4(n + 2)
# Lookup table that store the reverse of each table
lookuptable.extend([B6(0), B6(1), B6(1), B6(2)])
# function countset Bits Using lookup table
# ans return set bits count
def countSetBits(N):
# adding the bits in chunks of 8 bits
count = lookuptable[N & 0xff] + lookuptable[(N >> 8) & 0xff] + lookuptable[(
N >> 16) & 0xff] + lookuptable[(N >> 24) & 0xff]
return count
# Driver Code
N = 354
# Function Call
print(countSetBits(N))
# This code is contributed by phasing17
// C# count to count number of set bits
// using lookup table in O(1) time
// Generate a lookup table for 32 bit integers
using System;
using System.Collections.Generic;
class GFG {
static List<int> lookuptable = new List<int>();
static void B2(int n)
{
lookuptable.Add(n);
lookuptable.Add(n + 1);
lookuptable.Add(n + 1);
lookuptable.Add(n + 2);
}
static void B4(int n)
{
B2(n);
B2(n + 1);
B2(n + 1);
B2(n + 2);
}
static void B6(int n)
{
B4(n);
B4(n + 1);
B4(n + 1);
B4(n + 2);
}
// function countset Bits Using lookup table
// ans return set bits count
static int countSetBits(int N)
{
// adding the bits in chunks of 8 bits
int count = lookuptable[N & 0xff]
+ lookuptable[(N >> 8) & 0xff]
+ lookuptable[(N >> 16) & 0xff]
+ lookuptable[(N >> 24) & 0xff];
return count;
}
// Driver Code
public static void Main(string[] args)
{
// Lookup table that store the reverse of each table
B6(0);
B6(1);
B6(1);
B6(2);
int N = 354;
// Function Call
Console.WriteLine(countSetBits(N));
}
}
// This code is contributed by phasing17
// JavaScript count to count number of set bits
// using lookup table in O(1) time
// Generate a lookup table for 32 bit integers
let lookuptable = [];
function B2(n)
{
lookuptable.push(n);
lookuptable.push(n + 1);
lookuptable.push(n + 1);
lookuptable.push(n + 2);
}
function B4(n)
{
B2(n), B2(n + 1), B2(n + 1), B2(n + 2)
}
function B6(n)
{
B4(n), B4(n + 1), B4(n + 1), B4(n + 2)
}
// Lookup table that store the reverse of each table
lookuptable.push(B6(0));
lookuptable.push(B6(1));
lookuptable.push(B6(1));
lookuptable.push(B6(2));
// function countset Bits Using lookup table
// ans return set bits count
function countSetBits(N)
{
// adding the bits in chunks of 8 bits
let count = lookuptable[N & 0xff] + lookuptable[(N >> 8) & 0xff] + lookuptable[(N >> 16) & 0xff] + lookuptable[(N >> 24) & 0xff];
return count;
}
// Driver Code
let N = 354;
// Function Call
console.log(countSetBits(N));
// This code is contributed by phasing17
Output:
4
Time Complexity: O(1)
Auxiliary Space: O(1)