|
| 1 | +package array; |
| 2 | + |
| 3 | +/** |
| 4 | +* Created by gouthamvidyapradhan on 10/03/2019 |
| 5 | +* A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of |
| 6 | +* values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan |
| 7 | +* Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|. |
| 8 | +* <p> |
| 9 | +* Example: |
| 10 | +* <p> |
| 11 | +* Input: |
| 12 | +* <p> |
| 13 | +* 1 - 0 - 0 - 0 - 1 |
| 14 | +* | | | | | |
| 15 | +* 0 - 0 - 0 - 0 - 0 |
| 16 | +* | | | | | |
| 17 | +* 0 - 0 - 1 - 0 - 0 |
| 18 | +* <p> |
| 19 | +* Output: 6 |
| 20 | +* <p> |
| 21 | +* Explanation: Given three people living at (0,0), (0,4), and (2,2): |
| 22 | +* The point (0,2) is an ideal meeting point, as the total travel distance |
| 23 | +* of 2+2+2=6 is minimal. So return 6. |
| 24 | +* <p> |
| 25 | +* Solution: O(N ^ 2 + M ^ 2) + O(N x M): Calculate the total number of persons in each row and each column and then |
| 26 | +* take a minimum of cartesian product of each row and each column. |
| 27 | +*/ |
| 28 | +public class BestMeetingPoint { |
| 29 | + |
| 30 | +/** |
| 31 | +* Main method |
| 32 | +* |
| 33 | +* @param args |
| 34 | +*/ |
| 35 | +public static void main(String[] args) { |
| 36 | +int[][] grid = {{1, 0, 0, 0, 1}, {0, 0, 0, 0, 0}, {0, 0, 1, 0, 0}}; |
| 37 | +System.out.println(new BestMeetingPoint().minTotalDistance(grid)); |
| 38 | +} |
| 39 | + |
| 40 | +public int minTotalDistance(int[][] grid) { |
| 41 | +int[] countR = new int[grid.length]; |
| 42 | +int[] countC = new int[grid[0].length]; |
| 43 | + |
| 44 | +int[] distR = new int[grid.length]; |
| 45 | +int[] distC = new int[grid[0].length]; |
| 46 | + |
| 47 | +for (int i = 0; i < grid.length; i++) { |
| 48 | +for (int j = 0; j < grid[0].length; j++) { |
| 49 | +if (grid[i][j] == 1) { |
| 50 | +countR[i]++; |
| 51 | +countC[j]++; |
| 52 | +} |
| 53 | +} |
| 54 | +} |
| 55 | + |
| 56 | +for (int i = 0; i < distR.length; i++) { |
| 57 | +for (int j = 0; j < distR.length; j++) { |
| 58 | +if (countR[j] != 0) { |
| 59 | +distR[i] += Math.abs(j - i) * countR[j]; |
| 60 | +} |
| 61 | +} |
| 62 | +} |
| 63 | + |
| 64 | +for (int i = 0; i < distC.length; i++) { |
| 65 | +for (int j = 0; j < distC.length; j++) { |
| 66 | +if (countC[j] != 0) { |
| 67 | +distC[i] += Math.abs(j - i) * countC[j]; |
| 68 | +} |
| 69 | +} |
| 70 | +} |
| 71 | + |
| 72 | +int min = Integer.MAX_VALUE; |
| 73 | +for (int i = 0; i < distR.length; i++) { |
| 74 | +for (int j = 0; j < distC.length; j++) { |
| 75 | +min = Math.min(min, distR[i] + distC[j]); |
| 76 | +} |
| 77 | +} |
| 78 | + |
| 79 | +return min; |
| 80 | +} |
| 81 | +} |
0 commit comments