
- C++ Library - Home
- C++ Library - <fstream>
- C++ Library - <iomanip>
- C++ Library - <ios>
- C++ Library - <iosfwd>
- C++ Library - <iostream>
- C++ Library - <istream>
- C++ Library - <ostream>
- C++ Library - <sstream>
- C++ Library - <streambuf>
- C++ Library - <atomic>
- C++ Library - <complex>
- C++ Library - <exception>
- C++ Library - <functional>
- C++ Library - <limits>
- C++ Library - <locale>
- C++ Library - <memory>
- C++ Library - <new>
- C++ Library - <numeric>
- C++ Library - <regex>
- C++ Library - <stdexcept>
- C++ Library - <string>
- C++ Library - <thread>
- C++ Library - <tuple>
- C++ Library - <typeinfo>
- C++ Library - <utility>
- C++ Library - <valarray>
- The C++ STL Library
- C++ Library - <array>
- C++ Library - <bitset>
- C++ Library - <deque>
- C++ Library - <forward_list>
- C++ Library - <list>
- C++ Library - <map>
- C++ Library - <multimap>
- C++ Library - <queue>
- C++ Library - <priority_queue>
- C++ Library - <set>
- C++ Library - <stack>
- C++ Library - <unordered_map>
- C++ Library - <unordered_set>
- C++ Library - <vector>
- C++ Library - <algorithm>
- C++ Library - <iterator>
- The C++ Advanced Library
- C++ Library - <any>
- C++ Library - <barrier>
- C++ Library - <bit>
- C++ Library - <chrono>
- C++ Library - <cinttypes>
- C++ Library - <clocale>
- C++ Library - <condition_variable>
- C++ Library - <coroutine>
- C++ Library - <cstdlib>
- C++ Library - <cstring>
- C++ Library - <cuchar>
- C++ Library - <charconv>
- C++ Library - <cfenv>
- C++ Library - <cmath>
- C++ Library - <ccomplex>
- C++ Library - <expected>
- C++ Library - <format>
- C++ Library - <future>
- C++ Library - <flat_set>
- C++ Library - <flat_map>
- C++ Library - <filesystem>
- C++ Library - <generator>
- C++ Library - <initializer_list>
- C++ Library - <latch>
- C++ Library - <memory_resource>
- C++ Library - <mutex>
- C++ Library - <mdspan>
- C++ Library - <optional>
- C++ Library - <print>
- C++ Library - <ratio>
- C++ Library - <scoped_allocator>
- C++ Library - <semaphore>
- C++ Library - <source_location>
- C++ Library - <span>
- C++ Library - <spanstream>
- C++ Library - <stacktrace>
- C++ Library - <stop_token>
- C++ Library - <syncstream>
- C++ Library - <system_error>
- C++ Library - <string_view>
- C++ Library - <stdatomic>
- C++ Library - <variant>
- C++ STL Library Cheat Sheet
- C++ STL - Cheat Sheet
- C++ Programming Resources
- C++ Programming Tutorial
- C++ Useful Resources
- C++ Discussion
C++ barrier::arrive() Function
The std::barrier::arrive() function in C++, is a synchronization mechanism introduced in C++20 that helps to coordinate multiple threads. It provides a way for threads to reach a specific point in execution.
When a thread calls arrive(), it signals that it has reached the barrier. The barrier waits until a predefined number of threads have called arrive(), then proceeds to release all waiting threads simultaneously, allowing them to continue execution.
Syntax
Following is the syntax for std::barrier::arrive() function.
arrival_token arrive( std::ptrdiff_t n = 1 );
Parameters
- n − It indicates the value by which the expected count is decreased.
Return value
This function returns the constructed arrival_token object.
Exception
It throws std::system_error with an error code allowed for mutex types on error.
Example 1
In the following example, we are going to use the arrive() to signal the completion of each thread work before they proceed to next phase.
#include <iostream> #include <thread> #include <barrier> #include <vector> void x(std::barrier < > & sync_point, int y) { std::cout << "Thread " << y << " started working.\n"; std::this_thread::sleep_for(std::chrono::milliseconds(200 * y)); std::cout << "Thread " << y << " completed work and arrives.\n"; sync_point.arrive(); } int main() { const int a = 2; std::barrier sync_point(a); std::vector < std::thread > b; for (int i = 0; i < a; ++i) { b.emplace_back(x, std::ref(sync_point), i + 1); } for (auto & t: b) { t.join(); } std::cout << "All threads arrived at the barrier.\n"; return 0; }
Output
Output of the above code is as follows −
Thread 2 started working. Thread 1 started working. Thread 1 completed work and arrives. Thread 2 completed work and arrives. All threads arrived at the barrier.
Example 2
Consider the following example, where we are going to split the task into phases and each phase requires threads to arrive at the barrier before proceeding.
#include <iostream> #include <thread> #include <barrier> void a(std::barrier < > & sync_point, int b) { std::cout << "Starting phase " << b << "\n"; sync_point.arrive(); std::cout << "Finished phase " << b << "\n"; } int main() { std::barrier sync_point(2); for (int i = 0; i < 2; ++i) { std::thread(a, std::ref(sync_point), i + 1).detach(); } std::this_thread::sleep_for(std::chrono::seconds(1)); return 0; }
Output
Following is the output of the above code −
Starting phase 1 Finished phase 1 Starting phase 2 Finished phase 2