
- C++ Library - Home
- C++ Library - <fstream>
- C++ Library - <iomanip>
- C++ Library - <ios>
- C++ Library - <iosfwd>
- C++ Library - <iostream>
- C++ Library - <istream>
- C++ Library - <ostream>
- C++ Library - <sstream>
- C++ Library - <streambuf>
- C++ Library - <atomic>
- C++ Library - <complex>
- C++ Library - <exception>
- C++ Library - <functional>
- C++ Library - <limits>
- C++ Library - <locale>
- C++ Library - <memory>
- C++ Library - <new>
- C++ Library - <numeric>
- C++ Library - <regex>
- C++ Library - <stdexcept>
- C++ Library - <string>
- C++ Library - <thread>
- C++ Library - <tuple>
- C++ Library - <typeinfo>
- C++ Library - <utility>
- C++ Library - <valarray>
- The C++ STL Library
- C++ Library - <array>
- C++ Library - <bitset>
- C++ Library - <deque>
- C++ Library - <forward_list>
- C++ Library - <list>
- C++ Library - <map>
- C++ Library - <multimap>
- C++ Library - <queue>
- C++ Library - <priority_queue>
- C++ Library - <set>
- C++ Library - <stack>
- C++ Library - <unordered_map>
- C++ Library - <unordered_set>
- C++ Library - <vector>
- C++ Library - <algorithm>
- C++ Library - <iterator>
- The C++ Advanced Library
- C++ Library - <any>
- C++ Library - <barrier>
- C++ Library - <bit>
- C++ Library - <chrono>
- C++ Library - <cinttypes>
- C++ Library - <clocale>
- C++ Library - <condition_variable>
- C++ Library - <coroutine>
- C++ Library - <cstdlib>
- C++ Library - <cstring>
- C++ Library - <cuchar>
- C++ Library - <charconv>
- C++ Library - <cfenv>
- C++ Library - <cmath>
- C++ Library - <ccomplex>
- C++ Library - <expected>
- C++ Library - <format>
- C++ Library - <future>
- C++ Library - <flat_set>
- C++ Library - <flat_map>
- C++ Library - <filesystem>
- C++ Library - <generator>
- C++ Library - <initializer_list>
- C++ Library - <latch>
- C++ Library - <memory_resource>
- C++ Library - <mutex>
- C++ Library - <mdspan>
- C++ Library - <optional>
- C++ Library - <print>
- C++ Library - <ratio>
- C++ Library - <scoped_allocator>
- C++ Library - <semaphore>
- C++ Library - <source_location>
- C++ Library - <span>
- C++ Library - <spanstream>
- C++ Library - <stacktrace>
- C++ Library - <stop_token>
- C++ Library - <syncstream>
- C++ Library - <system_error>
- C++ Library - <string_view>
- C++ Library - <stdatomic>
- C++ Library - <variant>
- C++ STL Library Cheat Sheet
- C++ STL - Cheat Sheet
- C++ Programming Resources
- C++ Programming Tutorial
- C++ Useful Resources
- C++ Discussion
C++ Unordered_map::max_size() Function
The C++std::unordered_map::max_size() function is used to return the maximum number of elements that can be held by unordered_map or container. This number depends on the system or library implementation.
When we use the max_size() function in the same programwith different unordered_maps or empty unordered_maps, we get the same maximum size of the unordered map container.
Syntax
Following is the syntax of std::unordered_map::max_size() function.
size_type max_size() const;
Parameters
This function does not accepts any parameter.
Return value
This function returns an unsigned integer, which is the maximum number of elements that can be held by unordered_map.
Example 1
Let's look at the following example, where we are going to demonstrate the usage of max_size()function.
#include <iostream> #include <unordered_map> using namespace std; int main(void) { unordered_map<char, int> um; cout << "max_size of unordered_map = " << um.max_size() << endl; return 0; }
Output
If we run the above code it will generate the following output −
max_size of unordered_map = 576460752303423487
Example 2
In the following example, we are going to perform a insertion on a empty map and observing the output before and after inserting the element.
#include <iostream> #include <unordered_map> using namespace std; int main(void) { unordered_map<char, int> um; cout << "max_size of unordered_map = " << um.max_size() << endl; um.insert({{'A', 2}, {'B', 5}, {'C', 6}, {'D', 10}}); cout<<"*** Maximum size of unordered map after inserting the element to it ***"<<endl; cout << "max_size of unordered_map = " << um.max_size() << endl; return 0; }
Output
Following is the output of the above code −
max_size of unordered_map = 576460752303423487 *** Maximum size of unordered map after inserting the element to it *** max_size of unordered_map = 576460752303423487
Example 3
Consider the following example, where we are going to consider the maps of two different sizes and checking if the maximum size of both containers are same or different.
#include <iostream> #include <unordered_map> using namespace std; int main(void) { unordered_map<int, int> uMap; unordered_map<int, int> um; cout << "max_size of unordered_map = " << uMap.max_size() << endl; cout << "max_size of unordered_map = " << um.max_size() << endl; uMap.insert({{1, 2}, {2, 5}, {3, 6}, {4, 10}}); um.insert({{2, 2}, {3, 5}, {5, 6}, {6, 10}}); cout<<"*** Maximum size of unordered map after inserting the element to it ***"<<endl; cout << "max_size of unordered_map = " << uMap.max_size() << endl; cout << "max_size of unordered_map = " << um.max_size() << endl; return 0; }
Output
Output of the above code is as follows −
max_size of unordered_map = 576460752303423487 max_size of unordered_map = 576460752303423487 *** Maximum size of unordered map after inserting the element to it *** max_size of unordered_map = 576460752303423487 max_size of unordered_map = 576460752303423487