
- C++ Library - Home
- C++ Library - <fstream>
- C++ Library - <iomanip>
- C++ Library - <ios>
- C++ Library - <iosfwd>
- C++ Library - <iostream>
- C++ Library - <istream>
- C++ Library - <ostream>
- C++ Library - <sstream>
- C++ Library - <streambuf>
- C++ Library - <atomic>
- C++ Library - <complex>
- C++ Library - <exception>
- C++ Library - <functional>
- C++ Library - <limits>
- C++ Library - <locale>
- C++ Library - <memory>
- C++ Library - <new>
- C++ Library - <numeric>
- C++ Library - <regex>
- C++ Library - <stdexcept>
- C++ Library - <string>
- C++ Library - <thread>
- C++ Library - <tuple>
- C++ Library - <typeinfo>
- C++ Library - <utility>
- C++ Library - <valarray>
- The C++ STL Library
- C++ Library - <array>
- C++ Library - <bitset>
- C++ Library - <deque>
- C++ Library - <forward_list>
- C++ Library - <list>
- C++ Library - <map>
- C++ Library - <multimap>
- C++ Library - <queue>
- C++ Library - <priority_queue>
- C++ Library - <set>
- C++ Library - <stack>
- C++ Library - <unordered_map>
- C++ Library - <unordered_set>
- C++ Library - <vector>
- C++ Library - <algorithm>
- C++ Library - <iterator>
- The C++ Advanced Library
- C++ Library - <any>
- C++ Library - <barrier>
- C++ Library - <bit>
- C++ Library - <chrono>
- C++ Library - <cinttypes>
- C++ Library - <clocale>
- C++ Library - <condition_variable>
- C++ Library - <coroutine>
- C++ Library - <cstdlib>
- C++ Library - <cstring>
- C++ Library - <cuchar>
- C++ Library - <charconv>
- C++ Library - <cfenv>
- C++ Library - <cmath>
- C++ Library - <ccomplex>
- C++ Library - <expected>
- C++ Library - <format>
- C++ Library - <future>
- C++ Library - <flat_set>
- C++ Library - <flat_map>
- C++ Library - <filesystem>
- C++ Library - <generator>
- C++ Library - <initializer_list>
- C++ Library - <latch>
- C++ Library - <memory_resource>
- C++ Library - <mutex>
- C++ Library - <mdspan>
- C++ Library - <optional>
- C++ Library - <print>
- C++ Library - <ratio>
- C++ Library - <scoped_allocator>
- C++ Library - <semaphore>
- C++ Library - <source_location>
- C++ Library - <span>
- C++ Library - <spanstream>
- C++ Library - <stacktrace>
- C++ Library - <stop_token>
- C++ Library - <syncstream>
- C++ Library - <system_error>
- C++ Library - <string_view>
- C++ Library - <stdatomic>
- C++ Library - <variant>
- C++ STL Library Cheat Sheet
- C++ STL - Cheat Sheet
- C++ Programming Resources
- C++ Programming Tutorial
- C++ Useful Resources
- C++ Discussion
C++ unordered_multimap::operator==() Function
The C++ std::unordered_multimap::operator==() function is used to check or compare whether two unordered_multimaps are equal or not. if both unordered_multimap are equal returns true otherwise false.
This function will work when the both the multimaps have the same data type, If we try to compare the unordered_multimaps with different data types, then it will displays an error.
Syntax
Following is the syntax of std::unordered_multimap::operator== function.
bool operator==(const unordered_multimap<Key,T,Hash,Pred,Alloc>& first,const unordered_multimap<Key,T,Hash,Pred,Alloc>& second);
Parameters
- first − First unordered_multimap object.
- second − Second unordered_multimap object.
Return value
This function returns true if both unordered_multimap are equal otherwise false.
Example 1
In the following example, let's see the usage of unordered_multimap::operator== function.
#include <iostream> #include <unordered_map> using namespace std; int main(void) { unordered_map<char, int> umm1; unordered_map<char, int> umm2; if (umm1 == umm2) cout << "Both unordered_maps are equal" << endl; umm1.emplace('a', 1); if (!(umm1 == umm2)) cout << "Both unordered_maps are not equal" << endl; return 0; }
Output
Let us compile and run the above program, this will produce the following result −
Both unordered_multimaps are equal Both unordered_multimaps are not equal
Example 2
Let's the following example, where we are going to use the operator==() function on the multimaps stored with same elements in different order.
#include <iostream> #include <unordered_map> using namespace std; int main(void) { unordered_multimap<char, int> umm1 = {{'C', 3}, {'A', 5}, {'B', 2}, {'A', 1}, {'D', 4}}; unordered_multimap<char, int> umm2 = {{'D', 4}, {'A', 5}, {'A', 1}, {'B', 2}, {'C', 3}}; if (umm1 == umm2) cout << "Both unordered_multimaps are equal" << endl; else cout << "Bothe are not equal"<<endl; return 0; }
Output
If we run the above code it will generate the following output −
Both unordered_multimaps are equal
Example 3
Consider the another scenario, where we are going to use the operator==() function on the multimaps of the same type with different elements.
#include <iostream> #include <unordered_map> using namespace std; int main(void) { unordered_multimap<char, int> umm1 = {{'E', 5}, {'f', 6}, {'g', 7}, {'H', 8}}; unordered_multimap<char, int> umm2 = {{'D', 4}, {'A', 1}, {'B', 2}, {'C', 3}}; if (umm1 == umm2) cout << "Both unordered_multimaps are equal" << endl; if (!(umm1 == umm2)) cout << "Both unordered_multimaps are not equal" << endl; return 0; }
Output
Following is the output of the above code −
Both unordered_multimaps are not equal
Example 4
Following is the example, where we are going to create a multimap that stores different data types and applying the operator==() function to check whether both are equal or not.
#include <iostream> #include <unordered_map> using namespace std; int main(void) { unordered_multimap<char, int> umm1 = {{'E', 5}, {'f', 6}, {'g', 7}, {'H', 8}}; unordered_multimap<int, int> umm2 = {{1, 4}, {2, 1}, {2, 2}, {4, 3}}; if (umm1 == umm2) cout << "Both unordered_multimaps are equal" << endl; if (!(umm1 == umm2)) cout << "Both unordered_multimaps are not equal" << endl; return 0; }
Output
Output of the above code is as follows −
ERROR!