
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to generate standard normal random numbers in R?
A standard normal distribution is the type of distribution that has mean equals to zero with standard deviation 1. If we want to generate standard normal random numbers then rnorm function of R can be used but need to pass the mean = 0 and standard deviation = 1 inside this function.
Example
rnorm(10,0,1)
Output
[1] 0.6936607 -0.7967657 -2.7544428 0.2688767 0.5278463 -1.5387568 [7] 1.1716632 -1.5033895 0.8112929 -1.0101065
Example
rnorm(50,0,1)
Output
[1] 2.58246666 -0.53083341 -0.57343343 1.08172756 1.30341849 -0.07440422 [7] -0.41869305 -0.96227706 -0.46899119 1.55428279 0.09162738 -0.96027221 [13] -0.84735327 -1.74949782 0.58541758 0.23117630 0.47402479 -0.72453853 [19] 0.07171564 1.13088794 0.18735157 0.25091758 -1.34728315 -0.39768159 [25] -0.38109955 -0.34019286 -1.51778561 -0.92222239 -1.22798041 -0.77350032 [31] -1.65852274 0.51227977 0.83822730 0.45359267 0.49714674 -1.47674552 [37] -0.01242228 1.60937112 0.38869615 1.73720338 0.56832087 -0.35619856 [43] -1.74371897 -0.77162373 -1.80142363 -0.92801065 0.92791947 0.14078622 [49] -1.55200961 -0.06995120
Example
rnorm(60,0,1)
Output
[1] -0.98030635 0.14934486 -1.55025640 0.80780101 -0.54240515 0.14488726 [7] 2.89290245 1.10729520 0.08050478 -0.44497057 1.10941494 1.74939247 [13] 0.84032675 0.47427879 0.11898992 1.85356655 0.19312780 -0.47810793 [19] 2.36569993 -0.45530246 -0.81494824 -1.99941347 -0.50359976 0.55592840 [25] 1.14048452 -1.02259883 -1.17629055 1.48930583 1.76136612 0.70749370 [31] 0.88976803 0.87302066 -0.90594396 -0.92584519 -0.57771767 -2.01680635 [37] 1.25990880 0.87272304 3.86728923 0.48660167 2.12238845 -1.23884756 [43] -0.29534035 -1.66654062 -0.92580904 0.46701435 -0.27171548 -0.79118171 [49] -1.87119180 -1.43572885 3.60672069 0.58631139 -0.38245860 0.62229426 [55] -0.54297322 -2.39866511 -1.91755583 -0.61459590 0.11865738 0.65653693
Example
rnorm(80,0,1)
Output
[1] -0.21167734 1.00334018 0.58986878 -1.15025242 0.83748340 0.04415646 [7] 0.21006101 -0.35285172 -0.53306794 -0.31683124 -0.15284674 1.72136890 [13] 0.67868984 -0.40103797 0.19409371 -0.31236848 1.08174032 0.82741254 [19] 1.52301592 0.92592501 -1.13193294 -0.52651889 -0.22310016 -0.93938644 [25] 0.27894221 -2.89894569 0.36546350 0.84345631 -0.81706708 0.18261437 [31] -0.69591250 1.09539577 -1.15864497 -0.22639388 -0.32866906 -1.12182835 [37] -0.08435003 1.81382691 0.04255180 -0.32941539 2.64070059 1.56935548 [43] -0.24635038 0.62292947 1.05232124 0.67012389 0.91400357 0.26348570 [49] -0.35494585 1.09602375 -1.39164787 -0.36638726 1.76550599 -0.22423221 [55] -0.33138915 -0.66652623 -0.50509947 -0.93338252 -2.70014038 -0.52016919 [61] 0.80396082 0.75912405 0.52966924 0.76088675 0.87390249 0.19404944 [67] -0.94092779 -1.20741440 -1.28536191 0.03052385 -2.23973254 -0.39531601 [73] -0.84322501 0.78849127 1.70032152 1.11591005 -1.15304534 -1.23219567 [79] 0.91807504 1.21157462
Example
rnorm(100,0,1)
Output
[1] -0.60163722 0.62726820 -0.78769462 0.72244706 -0.57654069 0.21386083 [7] -0.53096986 0.34563279 -0.97023650 -0.94702500 -0.37624883 0.44073439 [13] 0.51851495 -1.93362586 0.74274197 -0.81861024 -0.49963242 1.45553031 [19] -0.47880775 -0.23169624 0.46348261 -1.19764668 0.77737123 -0.50783209 [25] -1.58899290 0.50528381 1.89222336 -0.57809997 0.05806867 1.16785099 [31] -1.06614535 0.61556520 -0.83564718 -1.02615977 0.89271898 0.53811493 [37] -0.54849449 -0.62497474 0.25675859 0.70320768 0.05848728 0.78376690 [43] 0.44276061 -0.58697558 -0.59758547 1.22975543 1.46945195 -0.79496156 [49] -0.58237963 0.16137738 0.22260587 0.45833685 -0.17046269 0.44890726 [55] -0.15563031 0.73221957 -1.97896622 -1.47629166 -2.02214096 -0.96495535 [61] 0.63474420 1.34149420 -0.91755563 0.35488624 0.01262576 -0.34079663 [67] 0.07963539 0.88896173 1.75045613 -0.08678552 0.19245374 1.32575165 [73] 1.41738151 -1.35060833 0.63737697 0.33369705 1.27021960 1.00779108 [79] -1.19586882 0.72829141 -0.09938002 -0.79827963 -1.20575102 -1.09457152 [85] 0.66310803 -0.41086839 -0.50120916 0.02167787 0.60022806 2.94091060 [91] -0.39845012 0.82483674 -2.72699869 -0.48183377 0.57821380 -0.85565220 [97] 2.55905507 0.24447168 0.53042496 -0.31205488