In this project, I have utilized survival analysis models to see how the likelihood of the customer churn changes over time and to calculate customer LTV. I have also implemented the Random Forest model to predict if a customer is going to churn and deployed a model using the flask web app.
The goal of SHAP is to explain the prediction of an instance x by computing the contribution of each feature to the prediction. The SHAP explanation method computes Shapley values from coalitional game theory. The feature values of a data instance act as players in a coalition.
This project aims to study the influence factors of international students' mobility with the case of international students from B&R countries studying in China.
This project contains the data, code and results used in the paper title "On the relationship of novelty and value in digitalization patents: A machine learning approach".
Trained a classifier by using labeled data and oversampling and undersampling techniques to predict if a borrower will default on a loan. The model is intended to be used as a reference tool to help investors make informed decisions about lending to potential borrowers based on their ability to repay. The purpose is to lower risk & maximize profit.