tfma.metrics.ObjectDetectionPrecisionAtRecall
Stay organized with collections Save and categorize content based on your preferences.
Computes best precision where recall is >= specified value.
Inherits From: PrecisionAtRecall
, Metric
tfma.metrics.ObjectDetectionPrecisionAtRecall(
recall: Union[float, List[float]],
thresholds: Optional[List[float]] = None,
num_thresholds: Optional[int] = None,
name: Optional[str] = None,
iou_threshold: Optional[float] = None,
class_id: Optional[int] = None,
class_weight: Optional[float] = None,
area_range: Optional[Tuple[float, float]] = None,
max_num_detections: Optional[int] = None,
labels_to_stack: Optional[List[str]] = None,
predictions_to_stack: Optional[List[str]] = None,
num_detections_key: Optional[str] = None,
allow_missing_key: bool = False
)
The threshold for the given recall value is computed and used to evaluate the corresponding precision.
If sample_weight
is None
, weights default to 1. Use sample_weight
of 0 to mask values.
Args |
---|
recall | A scalar or a list of scalar values in range [0, 1] . |
thresholds | (Optional) Thresholds to use for calculating the matrices. Use one of either thresholds or num_thresholds. |
num_thresholds | (Optional) Defaults to 1000. The number of thresholds to use for matching the given recall. |
name | (Optional) string name of the metric instance. |
iou_threshold | (Optional) Thresholds for a detection and ground truth pair with specific iou to be considered as a match. Default to 0.5 |
class_id | (Optional) The class id for calculating metrics. |
class_weight | (Optional) The weight associated with the object class id. |
area_range | (Optional) A tuple (inclusive) representing the area-range for objects to be considered for metrics. Default to (0, inf). |
max_num_detections | (Optional) The maximum number of detections for a single image. Default to None. |
labels_to_stack | (Optional) Keys for columns to be stacked as a single numpy array as the labels. It is searched under the key labels, features and transformed features. The desired format is [left bounadary, top boudnary, right boundary, bottom boundary, class id]. e.g. ['xmin', 'ymin', 'xmax', 'ymax', 'class_id'] |
predictions_to_stack | (Optional) Output names for columns to be stacked as a single numpy array as the prediction. It should be the model's output names. The desired format is [left bounadary, top boudnary, right boundary, bottom boundary, class id, confidence score]. e.g. ['xmin', 'ymin', 'xmax', 'ymax', 'class_id', 'scores'] |
num_detections_key | (Optional) An output name in which to find the number of detections to use for evaluation for a given example. It does nothing if predictions_to_stack is not set. The value for this output should be a scalar value or a single-value tensor. The stacked predicitions will be truncated with the specified number of detections. |
allow_missing_key | (Optional) If true, the preprocessor will return empty array instead of raising errors. |
Attributes |
---|
compute_confidence_interval | Whether to compute confidence intervals for this metric. Note that this may not completely remove the computational overhead involved in computing a given metric. This is only respected by the jackknife confidence interval method. |
Methods
computations
View source
computations(
eval_config: Optional[tfma.EvalConfig
] = None,
schema: Optional[schema_pb2.Schema] = None,
model_names: Optional[List[str]] = None,
output_names: Optional[List[str]] = None,
sub_keys: Optional[List[Optional[SubKey]]] = None,
aggregation_type: Optional[AggregationType] = None,
class_weights: Optional[Dict[int, float]] = None,
example_weighted: bool = False,
query_key: Optional[str] = None
) -> tfma.metrics.MetricComputations
Creates computations associated with metric.
from_config
View source
@classmethod
from_config(
config: Dict[str, Any]
) -> 'Metric'
get_config
View source
get_config() -> Dict[str, Any]
Returns serializable config.