tf.compat.v1.reduce_mean

Computes the mean of elements across dimensions of a tensor.

Used in the notebooks

Used in the tutorials

Reduces input_tensor along the dimensions given in axis by computing the mean of elements across the dimensions in axis. Unless keepdims is true, the rank of the tensor is reduced by 1 for each the entries in axis, which must be unique. If keepdims is true, the reduced dimensions are retained with length 1.

If axis is None, all dimensions are reduced, and a tensor with a single element is returned.

For example:

x = tf.constant([[1., 1.], [2., 2.]])
tf.reduce_mean(x)
<tf.Tensor: shape=(), dtype=float32, numpy=1.5>
tf.reduce_mean(x, 0)
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([1.5, 1.5], dtype=float32)>
tf.reduce_mean(x, 1)
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([1., 2.], dtype=float32)>

input_tensorThe tensor to reduce. Should have numeric type.
axisThe dimensions to reduce. If None (the default), reduces all dimensions. Must be in the range [-rank(input_tensor), rank(input_tensor)).
keepdimsIf true, retains reduced dimensions with length 1.
nameA name for the operation (optional).
reduction_indicesThe old (deprecated) name for axis.
keep_dimsDeprecated alias for keepdims.

The reduced tensor.

numpy compatibility

Equivalent to np.mean

Please note that np.mean has a dtype parameter that could be used to specify the output type. By default this is dtype=float64. On the other hand, tf.reduce_mean has an aggressive type inference from input_tensor, for example:

x = tf.constant([1, 0, 1, 0])
tf.reduce_mean(x)
<tf.Tensor: shape=(), dtype=int32, numpy=0>
y = tf.constant([1., 0., 1., 0.])
tf.reduce_mean(y)
<tf.Tensor: shape=(), dtype=float32, numpy=0.5>