tf.raw_ops.SamplingDataset

Creates a dataset that takes a Bernoulli sample of the contents of another dataset.

There is no transformation in the tf.data Python API for creating this dataset. Instead, it is created as a result of the filter_with_random_uniform_fusion static optimization. Whether this optimization is performed is determined by the experimental_optimization.filter_with_random_uniform_fusion option of tf.data.Options.

input_datasetA Tensor of type variant.
rateA Tensor of type float32. A scalar representing the sample rate. Each element of input_dataset is retained with this probability, independent of all other elements.
seedA Tensor of type int64. A scalar representing seed of random number generator.
seed2A Tensor of type int64. A scalar representing seed2 of random number generator.
output_typesA list of tf.DTypes that has length >= 1.
output_shapesA list of shapes (each a tf.TensorShape or list of ints) that has length >= 1.
nameA name for the operation (optional).

A Tensor of type variant.